由 devell 於 星期六 三月 26, 2005 12:38 am
1.先將ax+by乘上x+y
(ax+by)(x+y)=ax^2+axy+bxy+by^2
=> 9(x+y)=ax^2+by^2+axy+bxy
=> 9(x+y)=57+(a+b)xy
=> 9(x+y)=57+8xy --------------------------(1)
2.再將ax^2+by^2乘上x+y
(ax^2+by^2)(x+y)=ax^3+ax^2y+bxy^2+by^3
=> 57(x+y)=(ax^3+by^3)+(ax+by)xy
=> 57(x+y)=111+9xy------------------------(2)
3.
9(x+y)=57+8xy --------------------------(1)x9
57(x+y)=111+9xy------------------------(2)x8
81(x+y)=513+72xy------------(3)
456(x+y)=888+72xy-----------(4)
(4)-(3)
375(x+y)=375
(x+y)=1 代入
得到 xy= -6
4.最後將ax^3+by^3乘上x+y
(ax^3+by^3)(x+y)=ax^4+ax^3y+bxy^3+by^4
=> 111.1= (ax^4+by^4)+(ax^2+by^2)xy
=> 111 = (ax^4+by^4)+ 57.(- 6)
=> 111+342 =ax^4+by^4 = 453
=> ax^4+by^4 = 453