[討論]七大數學難題

[討論]七大數學難題

jacky 於 星期日 十二月 29, 2002 1:43 am


七大數學難題

德國數學家David Hilbert於1900年在巴黎舉行的第二屆國際數學家協會中公布了他的23個數學難題,百年來,已經解出了20個問題,而這些結果間接促成了文明史上醫學、科技、與安全問題的重大突破。
不久前英、美兩家出版社獎勵說,誰能在兩年內證明哥德巴赫猜想,將可得到獎金100萬美元。稍後,美國「克萊數學院」2000年5月24日又宣佈,7大數學難題懸賞求解。學院將這7大難題命名為『千禧年大獎問題』,並將發給每位正確解答者100萬美元。根據學院規定,解答必須公布在知名的數學期刊上,並且保留2年的辯證期。一旦通過多方辯證考驗,數學界大家都滿意他的證明後,「克萊數學院」會在頒發獎金前公開所有的審核過程。主辦單位認為,第一筆獎金最快也要到4年後才會發出。
在「克萊數學院」宣佈7大難題懸賞舉行的新聞發佈會上,身為「克萊數學院」委員,並在1995年因修正了「費瑪最後定理(Fermat's Last Theorem)」的邏輯漏洞而名噪一時的懷爾斯(Andrew Wiles)說:「這些是二十世紀最難解的七大數學問題了。希望透過獎金獎勵,可以吸引並發掘新一代的數學家。」他自己對於興趣在一個數學家成長過程中的作用有著深刻的體會。懷爾斯回憶說,他10歲時在一本連環畫上首次知道了什麼是『費爾馬大定理』,這成為他不斷探索問題解答的起點。「克萊數學院」揮金如土的另一個原因,是因為此次懸賞求解的7大難題是20世紀中仍未被數學家解決的數學題。過去100年來,最優秀的數學家面對它們都無計可施。而這幾道難題的破解,極有可能為密碼學等研究帶來革命。例如,有關專家指出,7大難題中最有名的『黎曼假設』一旦獲得解答,將有助於研製出提高網路上資訊傳輸的安全性,客戶的信用卡賬號資訊、醫療和金融資料等將獲得到更高的保障。而其餘的"普安卡雷猜想"、"霍奇猜想"、"戴爾猜想"、"斯托克斯方程"、"米爾斯理論"以及"P對NP問題"等6大難題,解決後可能給航太等領域帶來突破性進展,並開展出空前的數學研究領域。  

1.黎曼假設 The Riemann Hypothesis
2.普安卡雷猜想 The Poincare Conjecture
3.霍奇猜想 The Hodge Conjecture
4.戴爾猜想The Birch and Swinnerton-Dyer Conjecture
5.斯托克斯方程(流體力學的N-S方程式)Navier-Stokes Existence and Smoothness
6.米爾斯理論「The Yang-Mills Theory」(楊密規範場論)Yang-Mills Existence and Mass Gap
7.P對NP問題 P versus NP
     
相關網站:
克萊數學院 Clay Mathematics Institute -千禧七大難題大競賽http://www.claymath.org/prize_problems/index.htm

jacky
訪客
 

墨炎 於 星期日 十二月 29, 2002 8:47 am


能稍微解釋一下???

墨炎

 
文章: 1350
註冊時間: 2002-12-26
來自: ☆時空洪流★

SCTT 於 星期日 十二月 29, 2002 7:28 pm


我也不太懂......

SCTT
訪客
 

yll 於 星期六 二月 03, 2007 9:16 am


美國麻州的克雷(Clay)數學研究所於2000年5月24日在巴黎法蘭西學院宣佈了一件被媒體炒得火熱的大事:對七個「千僖年數學難題」的每一個懸賞一百萬美元。以下是這七個難題的簡單介紹。

  「千僖難題」之一:P(多項式算法)問題對NP(非多項式算法)問題

  在一個週六的晚上,你參加了一個盛大的晚會。由於感到侷促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鐘,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook)於1971年陳述的。

  「千僖難題」之二: 霍奇(Hodge)猜想

  二十世紀的數學家們發現了研究複雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。

  「千僖難題」之三: 龐加萊(Poincare)猜想

  如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮鬥。

  「千僖難題」之四: 黎曼(Riemann)假設

  有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分佈並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分佈的許多奧秘帶來光明。

  「千僖難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口

  量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關係。基於楊-米爾斯方程的預言已經在如下的全世界範圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。儘管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於「夸克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。

  「千僖難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性

  起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。

  「千僖難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想

  數學家總是被諸如x^2+y^2=z^2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為複雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解),相反,如果z(1)不等於0,那麼只存在有限多個這樣的點。

轉自:

http://www.mathcn.com/Article_D/2006-06/382529247577441.htm


yll
帥哥良~
帥哥良~
 
文章: 4367
註冊時間: 2002-08-28
來自: 天父的小花園~






數學挑戰題之『未解的難題』