[大學]2題證明

[大學]2題證明

訪客 於 星期日 十月 02, 2011 4:59 pm


1.
Let A be a non-empty subset of R. Define -A := {-X I XkA}
Show the following statements.
(a) A has a supremum if and only if -A has an ifimum, in
which case we have inf(-A) = -supA.
(b) A has an in mum if and only if -A has a supremum, in
which case we have sup(-A) = -inf A.

2.
Show that the completeness axiom of real number system (i.e.
the Least Upper Bound Property) is equivalent to the Greatest
Lower Bound Property: Every non-empty set A of real numbers
that has a lower bound has a greatest lower bound.
與上一題有關

訪客

 

Tzwan 於 星期六 六月 08, 2013 4:06 pm


1.
  (a)
  左鍵: 點擊縮放; 右鍵: 觀看原圖
  (b)
  左鍵: 點擊縮放; 右鍵: 觀看原圖

2.
  左鍵: 點擊縮放; 右鍵: 觀看原圖

  So the completeness axiom of real number system is equivalent to the Greatest Lower Bound Property.

Tzwan
初學者
初學者
 
文章: 33
註冊時間: 2013-04-01






大學以上數學問題