[高中]數論延伸

[高中]數論延伸

passion 於 星期二 九月 07, 2010 11:44 pm





1.  20
個同學在草地上圍成一圈開營火晚會,有足量的巧克力糖給他們當點心。(以粒為單位,可以吃任意多粒。)晚會結束時,統計一下每個人吃的數量,發現不論每個人吃了多少粒,總有一些座位連在一起的人(可能一人或可含全部),他們吃的數量和為
20
的倍數,為什麼?


<xml><o> </o>
                                                                                    

2.
找出所有的質數p,使得方程組
<o></o>

p+1=2
x
︿
2
)與(
p
︿
2

+1=2

y
︿
2

      <o></o>

有整數解
x

y

<o></o>

註:如(
x
︿
2
)是指
x
的二次方【我不太會打字】
<o></o>

<o> </o>
3.證明:有無窮多的正整數
n
滿足
n
|(
2

n
次方)+
1  
【可能方法
1
:能令
n=3k
,利用數歸
?

<o></o>





明天就要交
請盡可能今天回覆.謝謝

passion
初學者
初學者
 
文章: 1
註冊時間: 2010-09-07






數論