[轉貼]說說模糊數學這門新興學科

[轉貼]說說模糊數學這門新興學科

J+W 於 星期三 一月 05, 2005 11:24 am


二十世紀六十年代,産生了模糊數學這門新興學科。

模糊數學的産生

現代數學是建立在集合論的基礎上。

集合論的重要意義就一個側面看,在與它把數學的抽象能力延伸到人類認識過程的深處。

一組物件確定一組屬性,人們可以通過說明屬性來說明概念(內涵),也可以通過指明物件來說明它。

符合概念的那些物件的全體叫做這個概念的外延,外延其實就是集合。

從這個意義上講,集合可以表現概念,而集合論中的關係和運算又可以表現判斷和推理,一切現實的理論系統都一可能納入集合描述的數學框架。

但是,數學的發展也是階段性的。
經典集合論只能把自己的表現力限制在那些有明確外延的概念和事物上,它明確地限定:每個集合都必須由明確的元素構成,元素對集合的隸屬關係必須是明確的,決不能模棱兩可。

對於那些外延不分明的概念和事物,經典集合論是暫時不去反映的,屬於待發展的範疇。

在較長時間堙A精確數學及亂數學在描述自然界多種事物的運動規律中,獲得顯著效果。

但是,在客觀世界中還普遍存在著大量的模糊現象。

以前人們回避它,但是,由於現代科技所面對的系統日益複雜,模糊性總是伴隨著複雜性出現。

各門學科,尤其是人文、社會學科及其它“軟科學”的數學化、定量化趨向把模糊性的數學處理問題推向中心地位。

更重要的是,隨著電子電腦、控制論、系統科學的迅速發展,要使電腦能像人腦那樣對複雜事物具有識別能力,就必須研究和處理模糊性。

我們研究人類系統的行爲,或者處理可與人類系統行爲相比擬的複雜系統,如航太系統、人腦系統、社會系統等,參數和變數甚多,各種因素相互交錯,系統很複雜,它的模糊性也很明顯。

從認識方面說,模糊性是指概念外延的不確定性,從而造成判斷的不確定性。

在日常生活中,經常遇到許多模糊事物,沒有分明的數量界限,要使用一些模糊的詞句來形容、描述。比如,比較年輕、高個、大胖子、好、漂亮、善、熱、遠……。

在人們的工作經驗中,往往也有許多模糊的東西。

例如,要確定一爐鋼水是否已經煉好,除了要知道鋼水的溫度、成分比例和冶煉時間等精確資訊外,還需要參考鋼水顔色、沸騰情況等模糊資訊。

因此,除了很早就有涉及誤差的計算數學之外,還需要模糊數學。

人與電腦相比,一般來說,人腦具有處理模糊資訊的能力,善於判斷和處理模糊現象。

但電腦對模糊現象識別能力較差,爲了提高電腦識別模糊現象的能力,就需要把人們常用的模糊語言設計成機器能接受的指令和程式,以便機器能像人腦那樣簡潔靈活的做出相應的判斷,從而提高自動識別和控制模糊現象的效率。

這樣,就需要尋找一種描述和加工模糊資訊的數學工具,這就推動數學家深入研究模糊數學。

所以,模糊數學的産生是有其科學技術與數學發展的必然性。

模糊數學的研究內容

1965年,美國控制論專家、數學家查德發表了論文《模糊集合》,標誌著模糊數學這門學科的誕生。

模糊數學的研究內容主要有以下三個方面:

第一,研究模糊數學的理論,以及它和精確數學、亂數學的關係。

察德以精確數學集合論爲基礎,並考慮到對數學的集合概念進行修改和推廣。他提出用“模糊集合”作爲表現模糊事物的數學模型。

並在“模糊集合”上逐步建立運算、變換規律,開展有關的理論研究,就有可能構造出研究現實世界中的大量模糊的數學基礎,能夠對看來相當複雜的模糊系統進行定量的描述和處理的數學方法。

在模糊集合中,給定範圍內元素對它的隸屬關係不一定只有“是”或“否”兩種情況,而是用介於0和1之間的實數來表示隸屬程度,還存在中間過渡狀態。

比如“老人”是個模糊概念,70歲的肯定屬於老人,它的從屬程度是 1,40歲的人肯定不算老人,它的從屬程度爲 0,按照查德給出的公式,55歲屬於“老”的程度爲0.5,即“半老”,60歲屬於“老”的程度0.8。

查德認爲,指明各個元素的隸屬集合,就等於指定了一個集合。當隸屬於0和1之間值時,就是模糊集合。

第二,研究模糊語言學和模糊邏輯。

人類自然語言具有模糊性,人們經常接受模糊語言與模糊資訊,並能做出正確的識別和判斷。

爲了實現用自然語言跟電腦進行直接對話,就必須把人類的語言和思維過程提煉成數學模型,才能給電腦輸入指令,建立和是的模糊數學模型,這是運用數學方法的關鍵。

查德採用模糊集合理論來建立模糊語言的數學模型,使人類語言數量化、形式化。

如果我們把合乎語法的標準句子的從屬函數值定爲1,那麽,其他文法稍有錯誤,但尚能表達相仿的思想的句子,就可以用以0到1之間的連續數來表徵它從屬於“正確句子”的隸屬程度。

這樣,就把模糊語言進行定量描述,並定出一套運算、變換規則。目前,模糊語言還很不成熟,語言學家正在深入研究。

人們的思維活動常常要求概念的確定性和精確性,採用形式邏輯的排中律,既非真既假,然後進行判斷和推理,得出結論。

現有的電腦都是建立在二值邏輯基礎上的,它在處理客觀事物的確定性方面,發揮了巨大的作用,但是卻不具備處理事物和概念的不確定性或模糊性的能力。

爲了使電腦能夠類比人腦高級智慧的特點,就必須把電腦轉到多值邏輯基礎上,研究模糊邏輯。目前,模糊羅基還很不成熟,尚需繼續研究。

第三,研究模糊數學的應用。

模糊數學是以不確定性的事物爲其研究物件的。

模糊集合的出現是數學適應描述複雜事物的需要,查德的功績在於用模糊集合的理論找到解決模糊性物件加以確切化,從而使研究確定性物件的數學與不確定性物件的數學溝通起來,過去精確數學、亂數學描述感到不足之處,就能得到彌補。

在模糊數學中,目前已有模糊拓撲學、模糊群論、模糊圖論、模糊概率、模糊語言學、模糊邏輯學等分支。

模糊數學的應用

模糊數學是一門新興學科,它已初步應用於模糊控制、模糊識別、模糊聚類分析、模糊決策、模糊評判、系統理論、資訊檢索、醫學、生物學等各個方面。

在氣象、結構力學、控制、心理學等方面已有具體的研究成果。

然而模糊數學最重要的應用領域是電腦職能,不少人認爲它與新一代電腦的研製有密切的聯繫。

目前,世界上發達國家正積極研究、試製具有智慧化的模糊電腦,1986年日本山川烈博士首次試製成功模糊推理機,它的推理速度是1000萬次/秒。

1988年,我國汪培莊教授指導的幾位博士也研製成功一台模糊推理機——分立元件樣機,它的推理速度爲1500萬次/秒。這表明我國在突破模糊資訊處理難關方面邁出了重要的一步。

模糊數學還遠沒有成熟,對它也還存在著不同的意見和看法,有待實踐去檢驗

來自《大科普網》(中文名)

J+W
版 主
版 主
 
文章: 2165
註冊時間: 2003-12-30

浩浩 於 星期三 一月 05, 2005 8:49 pm


恩恩.挺耐人思索的文章.
從前學數學好像都只探討精確的部分.較混沌模糊的地方大多撇開不談.沒想到那些部分還是有很大的用處.
數學的發展真是日新月異啊.
Fernando Tan
歡迎大家加入: http://tw.club.yahoo.com/clubs/happylearning/

只要我不放棄,夢想就在不遠處

浩浩
版 主
版 主
 
文章: 488
註冊時間: 2004-02-14
來自: 數之領域






數學文章