[分享]Some basic geometric theorems

Raceleader 於 星期三 四月 09, 2003 9:54 am


Isosceles triangle
左鍵: 點擊縮放; 右鍵: 觀看原圖
Definition: The triangle has two equal sides

Raceleader
訪客
 

Raceleader 於 星期三 四月 09, 2003 9:55 am


Base angles of isosceles triangle
左鍵: 點擊縮放; 右鍵: 觀看原圖
In an isosceles triangle ABC, if AB=AC, then ∠ABC=∠ACB (Base angles of isosceles triangle)

Proof
左鍵: 點擊縮放; 右鍵: 觀看原圖
D is a mid-point of BC, join AD.
AB=AC (Given)
BD=CD (Given)
DA=DA (Common sides)
∴△ABD≡△ACD (SSS)
∴∠ABC=∠ACB (Corresponding angles, congruent triangles)

Raceleader
訪客
 

Raceleader 於 星期三 四月 09, 2003 9:55 am


Side opposite equal angles
左鍵: 點擊縮放; 右鍵: 觀看原圖
If ∠ABC=∠ACB, then AB=AC (Side opposite equal angles)

Proof
左鍵: 點擊縮放; 右鍵: 觀看原圖
D is a point on BC, such that AD⊥BC.  Join AD.
∠ABD=∠ACD (Given)
∠BDA=∠CDA=90° (Given)
DA=DA (Common sides)
∴△ABD≡△ACD (AAS)
∴AB=AC (Corresponding sides, congruent triangles)

Raceleader
訪客
 

Raceleader 於 星期三 四月 09, 2003 10:20 am


Equilateral triangle
左鍵: 點擊縮放; 右鍵: 觀看原圖
Definition: All sides of the triangle are equal

Raceleader
訪客
 

Raceleader 於 星期三 四月 09, 2003 10:27 am


Property of equilateral triangle
左鍵: 點擊縮放; 右鍵: 觀看原圖
If ABC is an equilateral triangle, then AB=BC=CA and ∠ABC=∠BCA=∠CAB=60° (Property of equilateral triangle)

Proof
△ABC is an equilateral triangle (Given)
∴The triangle has three equal sides (By definition)
∴AB=BC=CA

∵AB=BC=CA (Prove)
∴∠ABC=∠ACB (Base angles of isosceles triangle)
∴∠BAC=∠BCA (Base angles of isosceles triangle)
∴∠ABC=∠BCA=∠CAB
∵∠ABC+∠BCA+∠CAB=180° (Angle sum of triangle)
∴3∠ABC=180°
∴∠ABC=∠BCA=∠CAB=60°


If AB=BC=CA or ∠ABC=∠BCA=∠CAB=60°, then △ABC is an equilateral triangle

Raceleader
訪客
 

Raceleader 於 星期五 四月 11, 2003 8:58 am


Parallelogram
左鍵: 點擊縮放; 右鍵: 觀看原圖
Definition: A quadrilateral which two pairs of opposite sides are parallel

Raceleader
訪客
 

Raceleader 於 星期五 四月 11, 2003 9:16 am


Opposite sides of parallelogram
左鍵: 點擊縮放; 右鍵: 觀看原圖
If ABCD is a parallelogram, then AB=DC and AD=BC (Opposite sides of parallelogram)

Proof
左鍵: 點擊縮放; 右鍵: 觀看原圖
Join AC.
ABCD is a parallelogram (Given)
∴AB//DC and AD//BC (By definition)
∴∠BAC=∠DCA (Alternate angles, AB//DC)
∴AC=CA (Common sides)
∴∠ACB=∠CAD (Alternate angles, AD//BC)
∴△BAC≡△DCA (ASA)
∴AB=DC and AD=BC (Corresponding sides, congruent triangles)

Raceleader
訪客
 

Raceleader 於 星期五 四月 11, 2003 10:52 am


Opposite angles of parallelogram
左鍵: 點擊縮放; 右鍵: 觀看原圖
If ABCD is a parallelogram, then ∠BAD=∠BCD and ∠ABC=∠CDA (Opposite angles of parallelogram)

Proof
ABCD is a parallelogram (Given)
∴AB//DC and AD//BC (By definition)
∴∠ADC+∠DAB=180° (Interior angles, AB//DC)
∴∠ABC+∠BCD=180° (Interior angles, AB//DC)
∴∠ADC+∠BCD=180° (Interior angles, AD//BC)
∴∠DAB+∠ABC=180° (Interior angles, AD//BC)
∴∠BAD=∠BCD及∠ABC=∠CDA

Raceleader
訪客
 

Raceleader 於 星期五 四月 11, 2003 11:04 am


Diagonals of parallelogram
左鍵: 點擊縮放; 右鍵: 觀看原圖
If ABCD is a parallelogram, then AB=DC and AD=BC (Diagonals of parallelogram)

Proof
ABCD is a parallelogram (Given)
∴AB//DC and AD//BC (By definition)
∴∠BOA=∠DOC (Vertical opposite angles)
∴∠OAB=∠OCD (Alternate angles, AB//DC)
∴AB=CD (Opposite sides of parallelogram)
∴△BOA≡△DOC (AAS)
∴AO=OC及BO=OD (Corresponding sides, congruent triangles)

Raceleader
訪客
 

Raceleader 於 星期五 四月 11, 2003 11:46 am


Opposite sides equal
左鍵: 點擊縮放; 右鍵: 觀看原圖
If AB=DC and AD=BC, then ABCD is a parallelogram (Opposite sides equal)

Proof
左鍵: 點擊縮放; 右鍵: 觀看原圖
Join AC.
AB=CD (Given)
BC=DA (Given)
CA=AC (Common sides)
∴△ABC≡△CDA (SSS)
∴∠CAB=∠ACD (Corresponding angles, congruent triangles)
∴∠BCA=∠DAC (Corresponding angles, congruent triangles)
∴AB//DC and AD//BC (Alternate angles equal)
∴ABCD is a parallelogram

Raceleader
訪客
 

Raceleader 於 星期二 四月 15, 2003 11:08 am


Opposite angles equal
左鍵: 點擊縮放; 右鍵: 觀看原圖
If ∠DAB=∠BCD and ∠ABC=∠CDA, then ABCD is a parallelogram (Opposite angles equal)

Proof
∠DAB=∠BCD (Given)
∠ABC=∠CDA (Given)
∠DAB+∠BCD +∠ABC+∠CDA=(4-2)180° (Angles sum of polygon)
∴2(∠DAB+∠ABC)=360°
∴∠DAB+∠ABC=180°
∴AD//BC (Interior angles supplementary)
∴2(∠ABC+∠BCD)=360°
∴∠ABC+∠BCD=180°
∴AB//DC (Interior angles supplementary)
∴ABCD is a parallelogram

Raceleader
訪客
 

Raceleader 於 星期二 四月 15, 2003 11:45 am


Diagonals bisect each other
左鍵: 點擊縮放; 右鍵: 觀看原圖
If AO=OC and BO=OD, then ABCD is a parallelogram (Diagonals bisect each other)

Proof
AO=CO (Given)
∠AOB=∠COD (Vertical opposite angles)
∠AOD=∠COB (Vertical opposite angles)
BO=DO (Given)
∴△AOB≡△COD (SAS)
∴△AOD≡△COB (SAS)
∴AB=CD (Corresponding sides, congruent triangles)
∴BC=DA (Corresponding sides, congruent triangles)
∴ABCD is a parallelogram (Opposite sides equal)

Raceleader
訪客
 

Raceleader 於 星期三 四月 16, 2003 12:18 pm


2 sides equal and parallel
左鍵: 點擊縮放; 右鍵: 觀看原圖
If AB=DC and AB//DC, then ABCD is a parallelogram (2 sides equal and parallel)

Proof
左鍵: 點擊縮放; 右鍵: 觀看原圖
Join AC.
BA=DC (Given)
BA//DC (Given)
∴∠BAC=∠DCA (Alternate angles, BA//DC)
AC=CA (Common sides)
∴△BAC≡△DCA (SAS)
∴BC=DA (Corresponding sides, congruent triangles)
∴ABCD is a parallelogram (Opposite sides equal)

Raceleader
訪客
 






平面&空間幾何