發表回覆

主題 通關密語 訪客發文, 請參考 這裡 輸入通關密語.

顯示表情符號

站內上傳圖檔     Upload.cc免費圖片上傳

數學塗鴉工具     常用數學符號表    

用Latex打數學方程式

 


 

+ / -檢視主題

Re: [邏輯]千元鈔票相加術 誰能告訴我 這樣規律是如何出來的

發表 asmobia 於 星期一 三月 19, 2007 9:12 am

糊塗迷蛋 寫到:#ed_op#DIV#ed_cl##ed_op#P#ed_cl#將千元鈔票的6位數字重新排列(由大到小)與原數字相減再檢去7所的數字不斷相加最後得2請問為什麼呀#ed_op#BR#ed_cl#EX 原數字:154111#ed_op#BR#ed_cl##ed_op#BR#ed_cl#541111#ed_op#BR#ed_cl#- 154111#ed_op#BR#ed_cl#=387000#ed_op#BR#ed_cl#- 7#ed_op#BR#ed_cl#=386993=38 =11 =2#ed_op#BR#ed_cl##ed_op#BR#ed_cl#3+8+6+9+9+3=38 3+8=11 1+1=2#ed_op#BR#ed_cl#最後降這6位數相加會等於2 #ed_op#/P#ed_cl##ed_op#/DIV#ed_cl#
#ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#首先,這一題將減7的部分改成加2會更圓滿.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#現在來解這題:#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第一部分:兩個六位數相減.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#在第一個相減的部分,我們知道相減的結果一定是9的倍數.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#為什麼?我們事實上作的事情是掉換六個數字的位數再相減,不是嗎?#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#我們取任何一個數字a#ed_op#SUB#ed_cl#1#ed_op#/SUB#ed_cl#好了;假設原來他在個位數,後來被調整到百位數.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#100xa#ed_op#SUB#ed_cl#1 #ed_op#/SUB#ed_cl#- a#ed_op#SUB#ed_cl#1#ed_op#/SUB#ed_cl# = 99xa#ed_op#SUB#ed_cl#1#ed_op#/SUB#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#是一個9的倍數.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#再舉另一個數字a#ed_op#SUB#ed_cl#5#ed_op#/SUB#ed_cl#好了;假設原來他在萬位數,後來被調整到十位數.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#10xa#ed_op#SUB#ed_cl#5#ed_op#/SUB#ed_cl# - 10000xa#ed_op#SUB#ed_cl#5#ed_op#/SUB#ed_cl# = -9990xa#ed_op#SUB#ed_cl#5#ed_op#/SUB#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#仍是9的倍數.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#也就是說,調動任一位數字的位數再予以相減,會是以下的答案:#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#10#ed_op#SUP#ed_cl#y#ed_op#/SUP#ed_cl#xa#ed_op#SUB#ed_cl#x#ed_op#/SUB#ed_cl# - 10#ed_op#SUP#ed_cl#x#ed_op#/SUP#ed_cl#xa#ed_op#SUB#ed_cl#x#ed_op#/SUB#ed_cl# = (10#ed_op#SUP#ed_cl#y#ed_op#/SUP#ed_cl#-10#ed_op#SUP#ed_cl#x#ed_op#/SUP#ed_cl#)xa#ed_op#SUB#ed_cl#x#ed_op#/SUB#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#該答案必為9的倍數.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl#又由於我們把最大的數字調到最前面,次大的調到第二位...#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#所以調整後的新數字絕不會小於原數字,故相減後"極可能"大於0.#ed_op#SUB#ed_cl#註一#ed_op#/SUB#ed_cl##ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第二部分:再減去7.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl#因為大於0又為9的倍數,所以該數減7之後為:#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#(9xm)-7 = (9xn)+2, n≥0#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#故減7之後的答案是一個9的倍數加2.#ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第三部分:六位數字相加.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#9的倍數有一個性質,那就是所有數字相加之後能被9除盡.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#故(9xn)的每位數字相加的和,是一個9的倍數;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#而(9xn)+2的每位數字相加的和,仍是一個9的倍數加2.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第四部分:相加之後各位數再相加.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#HR#ed_cl##ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#9=10-1, 9xn=10xn-1xn#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#所以說若增加2個9;則十位數字增加2,個位數字減少2.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#若增加6個9;則十位數字增加6,個位數字減少6.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#各位數相加的總合仍然不變.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#一個9的倍數加2,可以寫成:#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#(9xn)+2=(10xn-1xn)+2#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#所以該數的各位數相加為2.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#故得証.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#註一:#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#DIV#ed_cl#由於我們把最大的數字調到最前面,次大的調到第二位...#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#所以調整後的新數字絕不會小於原數字,故相減後"極可能"大於0.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl# #ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#但是若六位數字都相同(333333),則兩數相減為0.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#減去7之後仍然是(9xn)+2,但是此時n=-1;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#後面的性質就不對了;所以題目減7的部分若是改成加2則會更完美.#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#但是趣味性就減少了.#ed_op#/DIV#ed_cl##ed_op#/DIV#ed_cl#

[邏輯]千元鈔票相加術 誰能告訴我 這樣規律是如何出來的

發表 糊塗迷蛋 於 星期一 三月 05, 2007 10:58 pm

#ed_op#DIV#ed_cl##ed_op#P#ed_cl#將千元鈔票的6位數字重新排列(由大到小)與原數字相減再檢去7所的數字不斷相加最後得2請問為什麼呀#ed_op#BR#ed_cl#EX 原數字:154111#ed_op#BR#ed_cl##ed_op#BR#ed_cl#541111#ed_op#BR#ed_cl#- 154111#ed_op#BR#ed_cl#=387000#ed_op#BR#ed_cl#- 7#ed_op#BR#ed_cl#=386993=38 =11 =2#ed_op#BR#ed_cl##ed_op#BR#ed_cl#3+8+6+9+9+3=38 3+8=11 1+1=2#ed_op#BR#ed_cl#最後降這6位數相加會等於2 #ed_op#/P#ed_cl##ed_op#/DIV#ed_cl#