### + / -檢視主題

#ed_op#DIV#ed_cl#先給前幾題好了，後面的很多重複。#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#如果後面被截掉的話，請自行把圖抓下來。#ed_op#/DIV#ed_cl##ed_op#P align=left#ed_cl##ed_op#IMG alt="image file name: 2k98d8788d55.jpg" src="http://yll.loxa.edu.tw/phpBB2/richedit/upload/2k98d8788d55.jpg" border=0#ed_cl##ed_op#/P#ed_cl##ed_op#P align=left#ed_cl##ed_op#B#ed_cl##ed_op#FONT face=Verdana size=2#ed_cl##ed_op#/FONT#ed_cl##ed_op#/B#ed_cl#&nbsp;#ed_op#/P#ed_cl##ed_op#DIV#ed_cl##ed_op#/DIV#ed_cl#
#ed_op#DIV#ed_cl#這些題目都不難吧！#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#判斷收斂不收斂的不看的話(事實上也只需湊到符合學過的性質在去比較，#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#別忘了，積分可以把它想成連加，所以級數的收斂準則就可以拿來使用了！)#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#不定積分的部份大抵就是有理分式，分部積分，代換法#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#給技巧但是不給結果，每題都有算過了，所以覺得還好不難。#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#如果需要可以給答案，但是你必須要先算算看吧！#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#不定積分依序來看，#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第一題跟第二題用有理分式，不過後面的積分有技巧！#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第三題分部積分一次，後面的積分跟sin有關#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第四題變數變換#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第五題跟第六題相同，分部積分兩次可解出#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第七題重複了，有理分式#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第八題有理分式#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第九題跟第十題其中一個有奇次方，留一個，利用(sinx)^2 + (cosx)^2 = 1代換求解，若都是偶次，則需利用倍角公式！#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第十一跟十二，必須先算出11然後可以簡單算12#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#11的算法是變數變換#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第十三算重複了，分部積分兩次#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第十四用分部積分，兩次就出來了#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第十五也算重複，分部積分一次，後面積分解出來的東西與sin有關#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第十六題也重複了，變數變換。#ed_op#/DIV#ed_cl#

### [數學]徵求數學高手解"微積分"問題

#ed_op#DIV#ed_cl##ed_op#U#ed_cl##ed_op#FONT color=#0000ff#ed_cl#徵求高手解題#ed_op#IMG src="http://web.ntnu.edu.tw/~49470111/calculus.jpg"#ed_cl##ed_op#/FONT#ed_cl##ed_op#/U#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl##ed_op#/DIV#ed_cl#