### + / -檢視主題

piny大大全答對,果然厲害~~
#ed_op#DIV#ed_cl#第一題#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#假設紅桶裡有X#ed_op#SUB#ed_cl#R#ed_op#/SUB#ed_cl#的紅顏料，藍桶有X#ed_op#SUB#ed_cl#B#ed_op#/SUB#ed_cl#的藍顏料，下標為顏料顏色#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#從紅桶裡拿一單位給藍桶#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#紅桶剩(X-1)#ed_op#SUB#ed_cl#R#ed_op#/SUB#ed_cl#，藍桶為X#ed_op#SUB#ed_cl#B#ed_op#/SUB#ed_cl#+1#ed_op#SUB#ed_cl#R#ed_op#/SUB#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#從藍桶裡拿一單位給紅桶#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#藍桶為(X#ed_op#SUB#ed_cl#B#ed_op#/SUB#ed_cl#+1#ed_op#SUB#ed_cl#R#ed_op#/SUB#ed_cl#)*[X/(X+1)]=[X-X/(X+1)]#ed_op#SUB#ed_cl#B#ed_op#/SUB#ed_cl#+[1-1/(X+1)]#ed_op#SUB#ed_cl#R#ed_op#/SUB#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#紅桶為(X-1)#ed_op#SUB#ed_cl#R#ed_op#/SUB#ed_cl#+[X/(X+1)]#ed_op#SUB#ed_cl#B#ed_op#/SUB#ed_cl#+[1/(X+1)]#ed_op#SUB#ed_cl#R#ed_op#/SUB#ed_cl##ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#藍桶裡紅色比例為[1-1/(X+1)]/X=1/(X+1)#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#紅桶裡藍色比例為[X/(X+1)]/X=1/(X+1)#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#所以比例相同#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第三題#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#可知110^3=1331000&lt;1442897&lt;120^3=1728000#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#可知1442897應為113之立方，驗算成立#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#&nbsp;#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#第四題#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#其中一桶放一顆紅色，餘99顆放另一桶#ed_op#/DIV#ed_cl##ed_op#DIV#ed_cl#機率為1/2*1+1/2*49/99=148/198(約0.7475)&nbsp;#ed_op#/DIV#ed_cl#

### [數學]終極面試題

你必需把一百顆彈珠全部放入兩個罐子中。請問你要怎麼分,才能隨便選一罐，
從中隨便選取一顆彈珠，拿到紅色彈珠的機率為最大?
又，用你那種分法，拿到紅彈珠的機率為多少?